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Cellular and Molecular Toxicity of Lead in
Bone
by Joel G. Pounds,* Gregory J. Long,' and
John F. Rosent

To fully understand the significance ofbone as a target tissue oflead toxicity, as well as a reservoir
of systemic lead, it is necessary to define the effects of lead on the cellular components of bone. Skel-
etal development and the regulation of skeletal mass are ultimately determined by the four different
types of cells: osteoblasts, lining cells, osteoclasts, and osteocytes. These cells, which line and pene-
trate the mineralized matrix, are responsible for matrix formation, mineralization, and bone resorp-
tion, under the control ofboth systemic and local factors. Systemic components of regulation include
parathyroid hormone, 1,25-dihydroxyvitamin D3, and calcitonin; local regulators include numerous
cytokines and growth factors.
Lead intoxication directly and indirectly alters many aspects ofbone cell function. First, lead may

indirectly alter bone cell function through changes in the circulating levels of those hormones, par-
ticularly 1,25-dihydroxyvitamin D3, which modulate bone cell function. These hormonal changes
have been well established in clinical studies, although the functional significance remains to be es-
tablished. Second, lead may directly alter bone cell function by perturbing the ability of bone cells
to respond to hormonal regulation. For example, the 1,25-dihydroxyvitamin D3-stimulated synthe-
sis of osteocalcin, a calcium-binding protein synthesized by osteoblastic bone cells, is inhibited by
low levels of lead. Impaired osteocalcin production may inhibit new bone formation, as well as the
functional coupling of osteoblasts and osteoclasts. Third, lead may impair the ability of cells to syn-
thesize or secrete other components ofthe bone matrix, such as collagen or bone sialoproteins (oste-
opontin). Finally, lead may directly effect or substitute for calcium in the active sites of the calcium
messenger system, resulting in loss of physiological regulation. The effects of lead on the recruit-
ment and differentiation of bone cells remains to be established. Compartmental analysis indicates
that the kinetic distribution and behavior of intracellular lead in osteoblasts and osteoclasts is simi-
lar to several other cell types. Many of the toxic effects of lead on bone cell function may be produced
by perturbation of the calcium and cAMP messenger systems in these cells.

Introduction
Importance of Bone Lead
Although the affinity of lead for the skeleton has

been widely recognized for many years, clinical, epide-
miological, and experimental evaluations of skeletal
lead toxicity are relatively rare and generally less so-
phisticated in approach than assessments oflead toxic-
ity in other target organs such as the nervous system.
Nevertheless, lead intoxication produces a diverse ar-
ray ofpathological changes in human and animal skel-
etons. As is customary with most outcomes of lead in-
toxication, the effects are dependent upon lead dose,
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duration of exposure, dietary calcium and phosphorus,
and other experimental variables. Furthermore, the
manifestation of lead intoxication in bone is undoubt-
edly the result of complex interplay between systemic
endocrine effects, cellular processes in bone, and chem-
ical processes in the bone matrix. Based upon the nu-
merous and diverse effects of lead on the skeleton, the
interaction of lead and calciotropic hormones, and the
actions of lead on bone cell function, it is likely that as
more sophisticated and appropriate experimental de-
signs and measures of skeletal toxicity are applied, ad-
verse effects of chronic, low-level lead will be demon-
strated in the skeleton.

It has long been acknowledged that the skeleton con-
tains most of the body burden of lead in humans. The
accumulation of lead in the skeleton begins during
fetal bone development and continues to age 60 years.
The toxicological significance of bone lead is increas-
ingly recognized, although many aspects of bone lead
metabolism and toxicity are not clearly characterized.
Lead in bone is of scientific and clinical interest for



POUNDS ET AL.

three general reasons. First, skeletal lead is important
as a reservoir of lead which may be mobilized by physi-
ological and pathological states including pregnancy,
lactation, and osteoporosis (1,2). The mobilization of
lead from these internal stores may cause adverse ef-
fects in other tissues, including the fetus. Second, bone
lead is important as the most meaningful measure of
cumulative lead exposure and most accurate predictor
of deficits in neurobehavioral outcomes produced by
lead (3,4). And finally, the skeleton is increasingly rec-
ognized as an important target organ system for lead
toxicity. (5,6).
There are several conceptual and technical intrica-

cies to establishing the dose-response relationship of
lead exposure to skeletal toxicity and to elucidating
the cellular and molecular mechanisms oflead toxicity
in the bone. Bone is a dynamic tissue, undergoing re-
modeling throughout life, and is regulated by a wide
range of hormonal and local factors. The skeleton and
bone mineral metabolism are also altered by physio-
logical states, such as pregnancy and aging or disease.
Skeletal lead toxicity, altered bone mineral metabol-
ism, and bone lead metabolism, must then be identi-
fied in the context of a complex regulatory system for
bone and bone minerals (Fig. 1). This task i. 'ompli-
cated by the small volume of cells in bone cct pared to
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FIGURE 1. Schematic figure illustrating the relationship of impor-
tant dietary and hormonal factors controlling and affecting
normal bone physiology, bone mineral metabolism, and systemic
and skeletal lead metabolism.

the much larger matrix volume that is maintained by
these cells. In addition, the cells themselves exhibit a
remarkable functional heterogeneity, integration, and
coordination in the formation and resorption of bone.
Furthermore, bone cells occupy a unique microenvi-
ronment with respect to lead, in that they are in direct
contact with and interact with bone.

Overview of Bone Cell Biology
An overview of the relationships of bone cells, oste-

oid, mineralized matrix, and systemic and local regula-
tors ofbone cell function is illustrated in Figure 2. The
regulation and function of these bone constituents is
described in some detail in the following sections. Skel-
etal development and the regulation of skeletal mass
are ultimately determined by the four different types
of cells: osteoblasts, lining cells, osteoclasts, and osteo-
cytes. These cells, which line and penetrate the min-
eralized matrix, are responsible for matrix formation,
mineralization, and bone resorption, under the control
of both systemic and local factors. Systemic compo-
nents ofregulation include parathyroid hormone, 1,25-
dihydroxyvitamin D3, and calcitonin; local regulators
include numerous cytokines and growth factors. A crit-
ical concept in the regulation ofbone remodeling is the
functional coupling of bone formation and resorption.
Most hormonal stimulators of osteoclastic bone resorp-
tion including parathyroid hormone do not act directly
on osteoclasts, but rather first on osteoblasts, then
release soluble factors that mediate osteoclast bone
resorption. In turn, osteoclasts generate factors that
influence osteoblastic proliferation, migration, differ-
entiation, matrix synthesis, and cessation ofsynthesis.
The documented effects oflead on each ofthese aspects
ofbone cell biology will be discussed in turn, including
parallels with other organ systems when appropriate.
Important gaps in our knowledge and understanding
of these processes will be identified as well.
The objective ofthis review is to provide a perspective

concerning the cellular and molecular aspects of bone
lead metabolism and toxicity rather than an exhaus-
tive review. Emphasis will be placed on relating the
interactions of lead and bone cells in the context of cur-
rent understanding of bone cell biology and the bone
matrix. In addition, we will review the diverse and
complex adverse effects of lead in this target organ.
Relatively little attention will be paid to the distribu-
tion and metabolism of lead in bone.

Pathology of Lead in the Skeleton
Lead intoxication produces an array ofeffects on both

human and animal skeletal systems. These effects in-
clude perturbation of bone development, bone forma-
tion, and bone resorption. This section will briefly
illustrate some of the diverse effects of lead on the
skeleton and the interdependency of lead toxicity,
calciotropic hormones, and diet. The reader is directed
to more comprehensive reviews of bone lead (7).
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FIGURE 2. Schematic figure illustrating the relationship of the osteoblasts, osteoclasts, lining cells, and osteocytes to the bone matrix and
some of the systemic and local factors that regulate bone cell function.

In common with other target organ systems, such as

the nervous system, the developing skeleton seems
more sensitive to lead than the adult skeleton. Lead
readily crosses the placenta and is associated with
skeletal malformations in the mouse, rat, and hamster
(8-11). Most of the abnormalities consist of fusion of
two or more vertebrae in the anterior part of the axial
skeleton (12). With dietary calcium deficiency, these ef-
fects are exacerbated, and there is a delayed ossifica-
tion in lead-exposed fetuses.
Human congenital lead poisoning is associated with

overt skeletal toxicity evidenced by dense cranial vault
and delayed skeletal and deciduous dental develop-
ment at birth (13). When these children were examined
7 months after chelation therapy, radiographs revealed
normal maturation, although tooth eruption did not
occur until 15 months of age.
Postnatal growth of children also appears sensitive

to chronic, low-level lead intoxication. A detailed anal-
ysis of the NHANES II data base by Schwartz et al. (5)
found an inverse relationship between blood lead levels
and height and chest circumference in children less
than 7 years of age. These findings have been con-
firmed in general by other retrospective studies (14)
and by the preliminary findings of260 infants in a pro-
spective study (6). These studies were not designed to
distinguish between endocrine aspects (growth hor-
mones), impaired energy production and utilization
(thyroid hormones), and more direct effects on bone cell
regulation and function as critical factors in reduced
stature. However, recent studies have found reduced
plasma levels of osteocalcin, a bone matrix protein

which is synthesized by osteoblasts, in lead toxic chil-
dren (15). Serum osteocalcin is a marker of osteoblast
activity, although it is not clear if reduced osteocalcin
levels are a cause or an effect of impaired bone forma-
tion. Nevertheless, these important studies demon-
strate impaired skeletal growth postnatally, with
blood lead below 10 ptg/dL. The underlying mechanism
and clinical significance remain to be established.
Perhaps the most complete experimental analysis of

the lead intoxicated skeleton is the assessment ofbone
turnover, formation, and resorption dynamics by mor-
phometric analysis. Anderson et al. (16) showed that in
beagle dogs exposed to lead for nearly 7 months, lead
intoxication decreased appositional rates, radial clo-
sure rates, activation frequency, bone formation rate,
and increased osteon formation time. These quantita-
tive measures may be interpreted as manifestations of
bone formation dynamics at the cellular, tissue, and
organ levels. These findings strongly support lead-de-
pendent decreases in bone formation rates at all three
levels of skeletal organization. A similar and subse-
quent study in the same laboratory not only confirmed
the previous findings even with a lower lead dose, but
also examined the reversibility of these pathological
changes (17). When beagle dogs were exposed to lead
for 6 months followed by cessation of lead exposure for
6 additional months, there was a persistent depression
ofcellular activity, but not bone formation at the tissue
or organ level, as inferred from the histomorphometric
measurements. Although these studies were performed
on a small number of animals, they provide important
and convincing evidence that chronic lead exposure
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alters normal bone physiology in adult animals. Other
studies, also using beagles, but using less sophisti-
cated radiographic morphometric and bone radiograph-
ic densitometric techniques, did not find differences
between control and low-level oral lead exposure (18).
Impaired bone formation is often associated with im-

paired formation of one or more constituents of the
organic matrix. Early studies by Hass et al. in lead in-
toxicated rabbits found retarded formation ofnew bone
at epiphyseal plates, which was accompanied by evi-
dence of increased osteoclastic activity (19). Microscop-
ically, these changes were evidenced by the delicacy of
trabecular structures and excess lacunar resorption of
trabeculae adjacent to zones of ossification. These in-
vestigators regarded the lesion as primarily one of in-
hibited osteoid formation complicated by enhanced
resorption of mineralized bone. This hypothesis was
further explored in rabbits with hypervitaminosis D
and confirmed that lead intoxication impaired the pro-
duction of not just bone matrix but arterial matrix as
well (20). While estimating human hazard from these
studies with superimposed hypervitaminosis is diffi-
cult at best, these studies clearly indicate the ability of
lead to alter bone growth and production of bone.
Numerous reports have documented focal lead toxici-

ty in regions of retained bullet fragments. Although
this rather uncommon route of lead toxicity is of lim-
ited use in defining the skeletal toxicity of lead in
larger populations exposed to lead via more conven-
tional routes, these studies do confirm that lead intoxi-
cation causes death of osteoclasts, induction of nuclear
and cytoplasmic lead-containing inclusions, lead-con-
taining mitochondrial precipitates, and defects in bone
formation and resorption which may be described as
incomplete osteocytic osteolysis (21). These selected re-
ports illustrate the diverse effects of lead on the skele-
ton. The skeletal toxicity oflead parallels that in other
organ systems in that the developing system may be
more sensitive. Furthermore, skeletal toxicity is modi-
fied by factors such as age and diet.

Lead and Systemic Regulation of
Bone Cell Function
Bone cells are under systemic regulation by a broad

spectrum of hormones (Fig. 2). This hormonal regula-
tion and perturbed regulation is important in normal
and pathological disease processes, including osteopo-
rosis. Interaction of lead and systemic regulators of
bone function is exceedingly complex. First, plasma
levels of several of these hormones are altered in lead
intoxication, as discussed below, demonstrating the
potential for perturbed systemic regulation of bone
mineral metabolism and skeletal function. Second,
many of these systemic regulators, such as 1,25-dihy-
droxyvitamin D3, also modulate systemic absorption
and skeletal metabolism of lead. Finally, lead intoxica-
tion may alter cellular response of target bone cells to
these systemic regulators. For more complete review of

lead and calciotropic hormones, including interactions
of lead with the hormonal regulation of calcium ab-
sorption and plasma calcium, the reader is directed to
earlier reviews (22).

Vitamin D
The hormonal form of vitamin D, 1,25-dihydroxyvi-

tamin D3, is necessary for bone growth and mineral-
ization, primarily for its regulation of serum calcium
and phosphorus. Osteoblasts, but not osteoclasts, have
1,25-dihydroxyvitamin D3 receptors, indicating that
stimulation of osteoclastic bone resorption by 1,25-di-
hydroxyvitamin D3 probably involves local regulatory
mechanisms (discussed below). 1,25-dihydroxyvitamin
D3 exerts its effects at the level of mRNA transcrip-
tion, which is characteristic of steroid hormones. How-
ever, several aspects of 1,25-dihydroxyvitamin D3 ef-
fects on osteoblasts remain unresolved.
Several studies report a significant effect of lead on

vitamin D levels in children. A strong negative correla-
tion was observed between the circulating level of 1,25-
dihydroxyvitamin D3 and blood lead levels in children
(23,24). Plasma 1,25-dihydroxyvitamin D3 levels in
lead intoxicated children were reduced to levels com-
parable to those of patients with metabolic bone dis-
ease, uremia, and hypothyroidism. However, after chel-
ation therapy, plasma 1,25-dihydroxyvitamin D3 levels
returned to normal. Clinical observations are sup-
ported by experimental studies that demonstrate de-
pressions of plasma 1,25-dihydroxyvitamin D3 in rats
fed 0.82% lead as lead acetate (25). In the same study,
lead exposure blocked the intestinal calcium transport
in response to administration of vitamin D. These ob-
servations are also significant because of the recently
recognized role of 1,25-dihydroxyvitamin D3 in cell dif-
ferentiation, cell maturation, and immunoregulation.

Parathyroid Hormone
Parathyroid hormone is a potent stimulator of osteo-

clastic bone resorption through several mechanisms.
This hormone stimulates the activity of all enzymes
involved in bone resorption in osteoclasts, but not
through direct effects on osteoclasts. Osteoclasts do not
have parathyroid hormone receptors. Rather, parathy-
roid hormone interacts with membrane receptors on
osteoblasts, which then activate the osteoclastic re-
sorption. Co-culture experiments strongly support the
role of an osteoblast-derived soluble paracrine factor
that regulates osteoclast activity (26,27). These ob-
servations illustrate and emphasize the functional
coupling of osteoblasts, which have parathyroid hor-
mone receptors, and osteoclasts, which do not. Parathy-
roid hormone may also affect the proliferation, differ-
entiation, and/or fusion of osteoclast progenitor cells
(28).
The actions of lead on parathyroid hormone are not

fully characterized. The single human study is the
clinical study of Rosen and co-workers, who found in-
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creased serum parathyroid hormone associated with
slightly decreased concentration of ionized calcium in
whole blood oflead-intoxicated children (23). The effect
of parathyroid hormone on renal and bone accumula-
tion of lead has also been accessed in adult rats by
Mouw and co-workers (29). Subcutaneous injection of
parathyroid extract increased both bone and renal lead
concentrations ofanimals exposed to lead in the drink-
ing water. The mechanism and significance of in-
creased parathyroid hormone in humans, or indeed the
sensitivity of other populations at risk such as lead
workers or the aged, and the sites of lead-parathyroid
hormone interactions remain to be established.

Calcitonin
Calcitonin, a small peptide also known as hypocal-

cemic hormone, is a major inhibitor of bone resorption
through direct effects on osteoclastic bone cells. Osteo-
clasts, but not osteoblasts, have calcitonin receptors,
and there are no apparent effects ofcalcitonin on osteo-
blasts or bone formation. In osteoclasts, calcitonin
causes a transient increase in calcium influx (30) and
reduces carbonic anhydrase II activity along the ruf-
fled border (31). This hormone also causes a decrease in
osteoclastic spreading, which also may be related to de-
creased resorption (32). Little is known of the long-
term effects of lead on either calcitonin-mediated func-
tion or the regulation of calcitonin. Following acute
lead exposure, however, calcitonin has been shown to
inhibit the hypercalcemia produced by IP or IV injec-
tions ofhigh levels oflead (33-37). However, since hypo-
calcemia, not hypercalcemia, is observed with chronic
lead intoxication, the significance of these observa-
tions to human exposure remains to be established.

Glucocorticoids
Glucocorticoid hormones, both natural and synthet-

ic, are potent simulators of bone resorption in vivo and
in vitro, in addition to producing profound and diverse
effects in other organs. The effects ofglucocorticoids on
bone cell function are apparently mediated through
both direct effects on osteoblasts (38) and indirectly by
enhancing the effects ofparathyroid hormone. Despite
a few provocative reports, few investigations have ex-
plored the potentially important and promising rela-
tionships between glucocorticoids and lead toxicity.
For example, the urinary excretion of the highly polar
metabolite of cortisol, 6,B-hydroxycortisol, is reduced in
lead-poisoned children, suggesting impaired glucocor-
ticoid metabolism by the cytochrome P-450-dependent
enzymes of the liver (39). Furthermore, stress, which
elevates plasma glucocorticoid levels, has been shown
to increase blood lead levels in nonhuman primates,
presumably by mobilizing lead stores through stimu-
lated bone resorption (40). The potential actions and
interactions of lead and glucocorticoids on bone cells,
bone resorption, and other effects may be related to or
confounded by concurrent induction of genes express-

ing heat-shock-like proteins, but via different induc-
tion mechanisms (41).

Lead and Local Regulation of Bone
Cell Function
The regulation ofbone cell function is the result of a

dynamic interplay between systemic and local media-
tors. The local regulators include paracrine and en-
docrine factors which may be secreted by local cells,
stored in bone matrix, and released from bone matrix
during resorption. Local regulation and the coupling of
osteoblast and osteoclast function is a new and active
area ofbone cell biology. Although virthially nothing is
known currently concerning the effects of lead on the
paracrine and autocrine regulation of bone cells, this
should be a very productive area of research in lead
toxicology.

Cytokines
Several cytokines (lymphokines) have been shown to

have important roles in regulating bone cell function.
These local regulators may play a prominent role in
both physiological and pathological conditions by med-
iating the effects of systemic hormones such as para-
thyroid hormone and 1,25-dihydroxyvitamin D3 and
the coupling of osteoblast and osteoclast function.
Interleukin-1 is a family of polypeptides with wide-

spread immunological and nonimmunological activi-
ty. Interleukin-1 ,B, also known as osteoclast-activating
factor, potently stimulates bone resorption and stim-
ulates DNA synthesis and osteoblast proliferation
(28,42). Interleukin-1 has no effect on bone resorption
unless osteoclasts are co-cultured with osteoblasts
underscoring the importance of coupled osteoblast-
osteoclast function (43).
Other cytokines with significant bone activity in-

clude tumor necrosis factor-a (TNF-a) and TNF-3 (lym-
photoxin), which were first described and identified on
the basis of their cytotoxic actions on tumor cells.
These cytokines have numerous effects on many non-
malignant cells including stimulation of bone resorp-
tion by osteoclasts. As is the case with interleukin-1,
TNF-a and TNF-f3 depend on the presence of co-cul-
tured osteoblastic cells, indicating that the cytokines
stimulate osteoclastic bone resorption via effects on
osteoblasts (43).
Nothing is known concerning the effects of lead on

cytokine production or the response ofbone to local reg-
ulation by cytokines. Experiments with macrophages
suggest that lead does not interfere with interleukin-1
production (44) nor the interaction of interleukin-2
with its receptor (45). It is not clear, however, whether
lead alters cellular responses to interleukin-1 in bone
or any other tissue. Local regulation is made more com-
plex by the synergistic action of TNF-a and interleu-
kin-1 on bone resorption (46).

21



POUNDS ET AL.

Prostaglandins
Prostaglandins are unsaturated, oxygenated fatty

acids that are synthesized from arachidonic acid. Their
local production and very short half-time make them
ideal local regulators of cell function. The specific ef-
fects ofprostaglandins on bone function are undoubted-
ly complex and remains confusing (28). Unfortunately,
little if anything is known regarding lead and prosta-
glandins in other tissues. The investigations are very
limited, but it appears that lead intoxication has little
effect, at least on serum levels ofprostaglandins E and
F (12).

Differentiation and Growth Factors
Because of the short, finite life span of osteoblasts

and osteoclasts, it is natural that growth factors play
an important role in maintaining the cellular integri-
ty of bone differentiation and local control of bone cell
function. Bone morphogenic protein and bone-derived
growth factors are the most important and best charac-
terized of the differentiation and growth factors pro-
duced by bone (47). Bone morphogenic protein irrevers-
ibly induces differentiation of mesenchymal cells into
osteoprogenitor cells. Bone-derived growth factors are
secreted by (and for) the osteoprogenitor cells, which
stimulate proliferation of these cells. Nothing is
known regarding the effects of lead on these important
regulators of bone development, growth, remodeling,
and repair. Indeed, little is known regarding the effects
of lead on growth factors in any other target organ of
lead poisoning.

Direct Effects of Lead on Osteoblasts
The osteoblast has a life time of 10 to 20 days and is

derived from a local mesenchymal stem cell, the osteo-
progenitor cell, which may differentiate into either a
chondroblast or an osteoblast (28,48). The osteoblasts
elaborate many important constituents of the organic
bone matrix or osteoid and initiate the mineralization
process. The osteoblast also plays a key role in the regu-
lation of bone resorption. Activation of osteoclastic
bone resorption by parathyroid hormone, 1,25-dihy-
droxyvitamin D3, or cytokines requires osteoblasts to
produce, as yet undefined, local factors that activate
osteoclastic bone resorption. This functional coupling
of osteoblasts and osteoclasts is one of the more impor-
tant aspects of bone cell physiology. The reader is di-
rected to more comprehensive reviews of the origin,
properties, function, and fate of osteoblasts (28,49).

Osteoprogenitor Cell Recruitment
The osteoblast is a relatively short-lived cell. Most

studies suggest that this cell type lasts about 10 to 14
days and is replaced by cell division and differentiation
of progenitor cells. Accordingly, the osteoblastic bone
population is analogous to developmental systems in
that cell division and biochemical and morphological

differentiation are key processes. Since developing and
actively growing animals and humans and developing
organ systems such as the nervous system are general-
ly considered to be more susceptible to lead poisoning
(50), these processes may also be targets of lead poison-
ing even in adults. No experimental data are available
that directly describe the effects oflead on recruitment
and differentiation of osteoblasts. It is clear from other
studies that lead may alter the differentiation of glial
cells and neuroblastoma cells in culture and neurons
in vivo (51-53). The effects oflead on protein, RNA, and
DNA synthesis are conflicting. Lead is reported to have
little effect, inhibit, or even stimulate various aspects
of nucleotide metabolism (54). These conflicting re-
sults may be the result ofmethodological differences or
phenotypic differences among studies. It is clear, how-
ever, from studies using purified DNA and RNA poly-
merases that lead has the potential to inhibit these
pathways. Considering the importance of cell division
and differentiation in maintaining osteoblastic func-
tion, these processes should be investigated in greater
detail in the skeletal system.

Synthesis and Secretion of Bone Matrix
The organic bone matrix, or osteoid, is composed of

a large number of constituents, including many pro-
teins synthesized by bone cells, some of which are dis-
cussed below. Osteoid also contains many constituents
derived from blood such as a2 heparan sulfate glyco-
protein, albumin, several immunoglobulins, and trans-
ferrin. Nonprotein constituents include histones, pep-
tides, and an array of lipids. In addition, nearly 20%
of the noncollagenous matrix remains unidentified,
and the interested reader is directed to recent reviews
(28,55). Very few ofthese matrix components have been
specifically investigated in lead intoxication.

Collagen
Type I collagen is by far the most abundant organic

component of osteoid. Collagen is synthesized by osteo-
blasts and is assembled outside the cell in a manner
similar to other cell types. The effect of lead on type I
collagen has not been specifically investigated in a sys-
tematic manner. However, several investigations have
reported that lead exposure impairs collagen synthesis
by bone and other cells. The most direct evidence is the
early work by Hass and co-workers who reported an
inhibitor effect oflead on vitamin D-stimulated matrix
production in bone and arteries in the rabbit (20). The
inhibition of collagen synthesis by lead has been con-
firmed by subsequent investigations using human
synovial cells, cultured embryonic chick bone, skin, or
cultured mouse fibroblasts (56-59). Again, the dose-re-
sponse relationships and clinical significance remain
to be established.

Osteocalcin
Osteocalcin (bone Gla protein) is a major noncollage-
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nous constituent ofbone accounting for 1 to 2% of total
bone protein. This acidic, calcium binding protein con-
tains three residues of y-carboxyglutamic acid per mol-
ecule, which is a posttranslational modification de-
pendent upon vitamin K. Osteocalcin is synthesized
only by osteoblasts and is mainly secreted into osteoid
where the osteocalcin binds to hydroxyapatite. This
binding is increased by the binding of Ca2+ to osteo-
calcin (60). Although molecular mechanisms are not
clear, osteocalcin plays a major, possibly nucleation,
role in the normal mineralization process in bone (61).
Small amounts of osteocalcin found in serum and cir-
culating levels of osteocalcin reflect physiological and
pathological states ofhigh bone turnover such as preg-
nancy, lactation, osteoporosis, and Paget's disease, in
which bone turnover rates are altered (62). The synthe-
sis of osteocalcin is stimulated by 1,25-dihydroxyvita-
min D3 in vivo and in vitro.
Plasma levels of osteocalcin are depressed in lead

toxic children who had positive EDTA provocative
tests. Within a few weeks following in-hospital EDTA
chelation therapy, the plasma levels of osteocalcin re-
turn to normal (15). The mechanism of this reduction
of circulating osteocalcin is not clear; the reduction
may be a) the end result of decreased circulating 1,25-
dihydroxyvitamin D3, b) increased osteocalcin degra-
dation, or c) reduced synthesis by osteoblasts. Recent
studies to elucidate the mechanism of reduced osteo-
calcin using the ROS 17/2.8 osteoblastlike cells have
established that lead is a potent inhibitor of 1,25-di-
hydroxyvitamin D3-stimulated osteocalcin synthesis
(63). In addition, preliminary studies indicate that
Pb2+ readily displaces Ca2` from osteocalcin and that
the binding of lead to osteocalcin impairs binding of
this protein to hydroxyapatite (15). The functional sig-
nificance of these findings in children remain to be
established, but it is reasonable to suggest that re-
duced osteocalcin levels reflect reduced osteoblastic
activity in lead intoxicated children, and that this
lesion may be reversed following successful chelation
therapy.

Osteopontin
At least two important bone sialoproteins have been

characterized in bone matrix. The bone sialoprotein I
(osteopontin) is found only in bone and binds strongly
to hydroxyapatite and contains amino acid sequences
identical to the cell-binding sequence in fibronectin.
No data are available regarding the effects of lead on
the synthesis or function of this protein in bone. How-
ever, it is interesting to note that in rat brain, lead de-
lays the progression of the highly sialated embryonic
form of the neural cell adhesion molecule (N-CAM) to
the less sialated adult form (64).

Osteonectin
Osteonectin is a bone protein with the unique ability

to facilitate in vitro mineralization of type I collagen

due to a high binding affinity for both apatite and in-
soluble collagen. It appears that this protein plays a
role in initiating mineral deposition and in linking
apatite to the collagenous bone matrix. Currently,
there is no information concerning the effects of lead
on the production or function of osteonectin.
Little information is available, either directly or by

extrapolation from other tissues, regarding the effects
of lead on the diverse organic components of the bone
matrix. This lack of information is due, in part, to the
fact that biochemical functions of these constituents
are only now being clarified. Further development and
application of cDNA probes, fluorescent antibodies,
and other molecular probes ofbone cell function should
help us establish the functional role of individual com-
ponents of the bone matrix. Once the normal regula-
tion and function of the constituents of the osteoid are
defined, the interactions and effects of lead on the or-
ganic bone matrix can be understood.

Direct Effects of Lead on Osteoclasts
Osteoclasts resorb bone during development, main-

tenance, and repair of the skeleton. In addition, osteo-
clasts elaborate paracrine factors that influence osteo-
blastic proliferation, migration, differentiation, ma-
trix synthesis, and cessation of synthesis (65-68).
These large, multinuclear cells are located on bone sur-
faces next to large vascular channels. Although osteo-
clasts may be longer lived than osteoblasts, it appears
that the lifetime ofan individual nuclei is 10 to 20 days
and that the osteoclasts are renewed by fusion of pre-
osteoclasts (69). Although the exact mechanisms of
bone resorption are not clear, several processes in-
volved in resorption may be important targets of lead
toxicity or modifiers ofbone lead metabolism. Bone re-
sorption involves both exocytosis and endocytosis at
the ruffled border. Acid hydrolases are synthesized and
secreted into the space between the osteoclast and the
mineralized bone matrix. This space is acidified to pro-
vide an optimal, confined environment for the function
of hydrolases, thus facilitating demineralization. Cell
respiration provides the energy and substrates for car-
bonic anhydrase isozyme II and the Na+,K+-ATPase,
which supply and pump H+ to the confined extracellu-
lar compartment below the ruffled border. The organic
and inorganic products ofresorption are taken into the
osteoclast by endocytosis, further digested in sec-
ondary lysosomes, and finally released into venous
sinuses.

Lead Inclusion Bodies
Lead inclusion bodies commonly occur in the cyto-

plasm and nuclei of osteoclasts, but not osteoblasts or
osteocytes (70,71). The ultrastructural characteristics
of these inclusions are indistinguishable from lead in-
clusions formed in the renal tubular cells, hepatocytes,
and astrocytes. In fact, Hamir et al. (72) found that
acid-fast inclusions were more common in osteoclasts
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(95% of cases) than in liver or kidney (37 and 68%) of
lead poisoned dogs. The presence ofthese inclusions in
any cell type is considered pathognomonic for lead in-
toxication. Microscopic studies suggest that osteo-
clasts are more sensitive to overt toxic effects than os-

teoblasts or lining cells (73,74). However, it is not estab-
lished if the toxic effects are due to the direct actions
of lead on osteoclasts or mediated indirectly though
lead effects on osteoblasts, thereby impairing osteo-
clast function.
The principal protein component of the inclusion

body in the kidney is the low molecular weight a2-mi-
croglobulin (75). This relatively high-affinity, lead-
binding protein mediates the translocation oflead into
isolated nuclei (76). In addition to mediating the intra-
nuclear bioavailability and effects of lead, this protein
may modulate the toxicity and the bioavailability of
lead to target enzymes, including as 6-aminolevulinic
acid dehydratase (77,78) and the distribution of lead in
kidney cells (79). The molecular mechanisms involved
in induction of a2-microglobulin in renal tubular cells
and the normal biochemical function and toxicological
significance of the protein are the subject of active in-
vestigation (75). No comparable biochemical charac-
terization of lead inclusion bodies and lead binding
proteins has been undertaken in bone cells, nor is it
clear why the osteoclast is the only bone cell to form
these lead inclusions. The osteoclast may be exposed
to or take up more lead during the process of bone
resorption.

Bone Resorption
Impaired bone resorption, which is consistent with

inhibition of osteoclastic function, is a consistent gen-
eralization that can be inferred from the relatively few
studies that have examined bone structure as affected
by lead toxicity. The mechanism of inhibited osteo-
clastic function may be mediated through a) the effects
of lead on 1,25-dihydroxyvitamin D3 and other sys-
temic regulators of bone resorption, b) overt toxicity
and cellular death of osteoclasts (21,71), c) the result of
more local and specific effects of lead on osteoclast
function, including uncoupling of osteoblastic regula-
tion, and d) a combination of the above actions. It is
likely that all ofthese processes contribute to impaired
osteoclastic bone resorption in varying degrees, de-
pending upon duration and severity of lead exposure.

Carbonic Anhydrase II and
Na+ ,K+-ATPase
Carbonic anhydrase II, which provides the protons to

acidify the confined extracellular space, is located just
inside the ruffled border ofthe osteoclast. This enzyme
contains Zn2+ at the active site, and like some other
zinc metalloenzymes such as &-aminolevulinic acid de-
hydratase, carbonic anhydrase II is sensitive to inhi-
bition by lead. Although no investigations have been
performed to date using osteoclasts, several studies

with purified apoenzyme have demonstrated binding
of lead to the active site of the enzyme, resulting in
reduced hydrolysis of carbon dioxide and thus reduced
production of protons (80,81).
Na+,K+-ATPase, located on the ruffled border mem-

brane, provides the proton motive force to move protons
from the cytoplasm to the extracellular space apposed
to the mineral matrix. Although it has not been ex-
amined specifically in osteoclasts, analogies to other
tissues suggest two mechanisms by which lead might
interfere with the movement ofprotons across the plas-
ma membrane. First, lead may directly inhibit Na+,
K+-ATPase, as has been reported in kidney and brain
(82-84). Second, through its effects on cellular energy
metabolism, lead may also impair acidification by re-
ducing availability of ATP substrate (85-87).
Lead would be available to interact with carbonic an-

hydrase II and Na+,K+-ATPase from at least three
sources, including blood, osteoclast lead stores (88),
and lead released following resorption of mineralized
matrix. The result of decreased acidity in the extracel-
lular space would be a suboptimal environment for
activity of the acid hydrolases and therefore impaired
bone resorption at that site consistent with the patho-
logical changes described above.

Effects of Lead on Osteocytes and
Lining Cells
As new bone is formed, some osteoblasts are buried

in bone and become osteocytes. These cells reside in
lacunae and are connected to each other by thin cell
projections in canaliculi. Osteocytes can both make
and resorb bone lining the lacunae, but probably func-
tion mainly in calcium homeostasis rather than bone
repair and maintenance. Lining cells are thin, flat,
elongated cells which cover most bone surfaces that
are not active, that is, bone undergoing neither forma-
tion nor resorption. The function of these cells is not
agreed upon, but it is believed that the lining cells may
function as progenitors for osteoblasts, serve as a selec-
tive barrier between the bone matrix and the vascula-
ture, or regulate hydroxyapatite crystal growth (28).
Little is known regarding the effects of lead on osteo-

cytes and lining cells for two reasons. First, the lack of
a clearly established function performed by these cells
makes it very difficult to establish lead-dependent
malfunction. Second, in regard to osteocytes, it is very
difficult to remove the cells from the mineralized bone
matrix for study in vitro. It should be noted that elec-
tron microscopic studies suggest that osteocytes are
less likely to show ultrastructural evidence of cell in-
jury than osteoclasts and osteoblasts (70,71).

Cellular Metabolism of Lead
In actuality, the metabolism oflead in bone cells can-

not be viewed independently of lead metabolism in the
mineral bone matrix. In fact, the experimental and
conceptual problem is to characterize one in the pres-
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FIGURE 3. Schematic figure illustrating the biological and chemical pathways by which lead is deposited and removed from bone. The sys-
temic and local regulators of bone cell function are illustrated in Figures 1 and 2.

ence of the other and to determine the relative contri-
bution of biological and chemical processes to bone
lead metabolism. Figure 3 illustrates the relationship
of some of the more important pathways for lead in
bone. Movement of lead into bone is predominantly
mediated by osteoblast activity, while osteoclast activ-
ity is mainly responsible for loss of lead from bone.
Some aspects of this scheme have been characterized
in detail as discussed below, while others are specula-
tive. More complete descriptions of skeletal lead me-
tabolism are given elsewhere (3,89-94).

It is important to note at the onset that lead readily
displaces Ca2` by cation exchange processes in the hy-
droxyapatite crystal in both natural and synthetic
apatite. It may also be useful to note that the position
of lead in the hydroxyapatite crystal has been studied
by several methods including X-ray diffraction and
that Pb2` occupies both Ca2` sites in the crystal lat-
tice (95-97). The effect of Pb2` on the crystallinity or
resorption of bone remains to be determined. In addi-
tion, lead is a potent calcergen, or inducer of ectopic
calcification. Subcutaneous injection of lead produces
an accumulation of lead, probably in the form of lead
triphosphate, around the connective tissue, which
eventually gives way to apatite formation and can be
prevented by high levels of calciwonin (98,99). In addi-
tion, calcification of soft tissue is sometimes associated
with lead intoxication (100). The significance and prev-
alence of these effects is not established.
The cellular and subcellular metabolism of lead has

been characterized in diverse cell types using several
approaches including radiotracer techniques, autora-

diography, histochemistry, electron microprobe energy
dispersive X-ray spectroscopy, and differential centri-
fugation. To some extent, the subcellular distribution
oflead depends on the method ofstudy (101). Relatively
few ofthese approaches have been applied to the inves-
tigation of lead in bone cells.
The first characterizations of bone lead metabolism

in vitro were conducted using bone organ cultures of
fetal rat radius and ulna (102-104). These studies
showed that at least one compartment of total bone
lead was readily exchanged and was modulated by the
same ions and hormones that regulate bone calcium
metabolism. Subsequent studies in primary cultures
found that the osteoclast accumulated considerably
more lead than osteoblasts from the culture medium
(88,105). As indicated above, lead is accumulated in in-
clusion bodies by osteoclasts, but not osteoblasts or
osteocytes. The most complete description of cellular
lead metabolism is the compartmental modeling of
210Pb washout curves in primary cultures of osteo-
clastic (88) and osteoblastic (105) bone cells isolated
from fetal mouse calvaria (88,105,106). Each cell type
contains three distinct kinetic pools of intracellular
lead (Figs. 4 and 5). The majority of the lead is associ-
ated with a slowly exchanging pool which probably in-
cludes the nitochondrial lead. The remaining lead is
distributed in two pools, one ofwhich exchanges across
the plasma membrane with a half-time of approxi-
mately 1 min. The biological constituents of these two
more rapidly exchanging pools remain enigmatic and
undoubtedly include lead associated with a wide vari-
ety of biochemical and structural constituents of cells.
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FIGURE 4. Physiological model for the steady-state metabolism of
lead in cultured murine osteoblastic bone cells. All data are nor-

malized to 1 mg of cell protein, with pool sizes expressed as nano-

moles lead per milligram ofprotein and percent oftotal cell lead,
fluxes as nanomoles per milligram cell protein per minute, and
half-times as minutes. From Long et al. (105).
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FIGURE 5. Physiological model for the steady-state metabolism of
lead in cultured murine osteoclastic bone cells. All data are nor-

malized to 1 mg of cell protein, with pool sizes expressed as nano-

moles lead per milligram of protein and percent of total cell cal-
cium, fluxes as nanomoles per milligram cell protein per minute,
and half-times as minutes. From Pounds and Rosen (88).

These same studies also found that hormonal regula-
tion of these cells caused a redistribution of Pb2` (and
Ca2+) inside the cell, usually without altering total
cellular lead. This dynamic redistribution at the sub-
cellular level may be related to impaired hormone re-

sponsiveness of these cells.

iodulin
sin kinase C
onin C

leceptor protein-dependent
osphatases, kinases,
osphorylases
d their substrates

FIGURE 6. A schematic representation ofthe calcium messenger sys-

tem illustrating the relationships of the signal transducing,
Ca"+ homeostasis, Ca2" receptor, Ca"+ response, and modulating
systems. From Pounds (114).

Lead-Calcium Interactions in Bone
Cells
Lead-calcium interactions occur at all levels of bio-

logical organization, i.e., systemic, cellular, subcellu-
lar, and molecular. The Ca2` messenger system may

be considered as the integrated function ofseveral com-
ponent sub-systems (Fig. 6). Each of these component
parts will be briefly described including a brief illus-
tration or summary of the action of lead on each sub-
system. A full review of these interactions is beyond
the scope of this forum, and the reader is referred to
more complete descriptions of the calcium messenger
system (107-109) and of the significance of these lead-
calcium interactions in lead toxicity (22,110-113).
The calcium-dependent cell functions that might be

of most importance to skeletal toxicity of lead include
exocytosis of systemic regulators by endocrine cells,
cell division, ameboid movement and differentiation of
osteoprogenitor cells, signal-response coupling of hor-
monal and local signals in osteoblasts and osteoclasts,
and substitution of lead for calcium in the calcium
binding proteins of the osteoid. The hormonal regula-
tion ofbone cell function was believed until recently to
be dominated by the cAMP messenger system. How-
ever, application of newer [Ca2`]j probes and availabil-
ity of well-characterized, bone-derived cell lines has
demonstrated that the biochemical responses of osteo-
blasts (and thus local regulation ofosteoclast response)
to stimulation by parathyroid hormone and 1,25-dihy-
droxyvitamin D3 are regulated by calcium and cAMP
in a complex manner (115-119). Although many as-

pects of the role of the calcium messenger system in
mediating systemic and local regulation are under
active investigation, there are sufficient investiga-
tions of lead-calcium interactions in bone cells to war-

rant conclusions and comparisons to other target cells.

Pb2' 0 07 nmol/min

(5 / iM) 1.2 min
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In addition, investigations in other systems might pro-

vide insight into observations made in bone cells.

Signal Transducing Systems
The concentration of free cytoplasmic calcium ion,

[Ca2'+i, is normally maintained between 50 and 150
nM by the Ca2` homeostasis system. The signal trans-
ducing system, which is composed mainly of products
from phosphoinositol metabolism, are the second mes-
sengers that transduce the hormonal or electrical sig-
nal at the plasma membrane to a Ca2` signal by in-
creasing [Ca2"]i in one or more parts of the cell. Im-
portant constituents ofthe signal transduction system
include Ca2` gates in the plasma membrane and the
products of phosphoinositol metabolism. Phosphoinos-
itol metabolites, mainly inositol (1,4,5)trisphosphate,
transduce and carry the message to mobilize Ca2`
from the plasma membrane receptor to the endoplas-
mic reticulum (107,108,120).
Lead interferes with the generation of a Ca2` signal

in may cells. Lead blocks Ca2` entry into nerve ter-
minals, thereby inhibiting the Ca2` signal (121). This
early work was extended by Simons, who demonstrated
in adrenal medullary cells that Pb2` inhibited Ca2`
entry when calcium channels were opened by depolari-
zation (122,123). In fact, the calcium channel had much
higher affinity and permeability to Pb2+ than to Ca2 .

In contrast, cells in which the Ca2+ signal is predomi-
nantly achieved by redistribution of intracellular cal-
cium do not show the same lead-dependent inhibition
of the Ca2+ signal (124). The effect of lead on the Ca2+
signal is complicated by the observation that a-adre-
nergic stimulation or depolarization, both of which
induce a Ca2+ signal, also mobilize Pb2+. Thus, a Pb2+
signal may be produced concurrently with a normal or
a lead-altered Ca2+ signal (122,125). In addition, hor-
monal stimulation of osteoclastic cells with calcitonin
and simulation of osteoblastic cells with parathyroid
hormone or 1,25-dihydroxyvitamin D3 affected a re-

distribution of subcellular lead within the three intra-
cellular kinetic pools.

Ca2+ Homeostasis System
The Ca2` homeostatic system is a medley of Ca2+

pumps and channels that work to keep the free cyto-
solic calcium ion, [Ca2+]j, within the normal physio-
logical range (126,127). Mitochondria serve as a high-
capacity, low-affinity Ca2+ storage site and contain a

Ca2+ transporter on the inner membrane to move Ca2+
from the cytoplasm to the mitochondrial matrix. This
uptake of Ca2+ is inhibited by lead in isolated mito-
chondria or tissue slices. Lead is also taken up and
stored in mitochondria via this same transporter. The
endoplasmic reticulum is more important in maintain-
ing Ca2+ at lower levels than the mitochondria; how-
ever, little is known regarding the effect of lead on

Ca2+ uptake or Pb2+ accumulation by the endoplasmic
reticulum.

Even in unstimulated cells, steady-state calcium
homeostasis is affected in primary cultures of osteo-
clastic bone cells, osteoblastic bone cells, and a clonal
osteoblastic cell line, ROS 17/2.8 cells (128,129). Total
cell calcium per milligram cell protein is increased
with lead intoxication. Most of this additional cell cal-
cium is associated with the mitochondrial calcium
pool. These experiments suggest that the plasma mem-
brane of lead intoxicated cells is more permeable to
Ca2` and/or less able to extrude Ca2` from inside the
cell to the extracellular environment. As the plasma
membrane becomes less proficient at maintaining bar-
rier and transport functions, the Ca2+ is sequestered
in mitochondria in an attempt to maintain Ca2+ ho-
meostasis. This conclusion is supported by recent di-
rect measurements of [Ca2`Ij using 19F NMR, also in
ROS 17/2.8 cells (130). These investigators found that
treatment with 5 or 25 zM Pb2` produced concentra-
tion-dependent increases in [Ca2+]i which persisteu
over 5 hr. These findings in bone cells are consistent
with similar studies in cultured rat hepatocytes, bo-
vine brain capillary endothelial cells, and lead intoxi-
cation in vivo (22,131).

Ca2+ Receptor System
The Ca2+ receptor system is a family of homologous

calcium-binding proteins that transduce the intracel-
lular Ca2+ signal to biochemical or mechanical re-
sponses. The Ca2+ receptor proteins include calmodu-
lin, protein kinase C, calcimedins, parvalbumins, trop-
onin-C, and many others (107,108,132-134). Some of
these Ca2+ receptor proteins, such as troponin C, are
specific to certain cell types, while others are ubiqui-
tous. The two most versatile and ubiquitous Ca2+ re-
ceptor proteins are calmodulin and protein kinase C.
The calmodulin-Ca2+ complex activates calmodulin-
dependent protein kinases and a variety of other en-
zymes to elicit responses. The calmodulin-mediated re-
sponses are typically of either brief duration (seconds)
or represent the initial phase of a more sustained re-
sponse. Well-characterized calmodulin-dependent re-
sponses include neurotransmitter release, endocrine
and exocrine secretion, muscle contraction, etc. Pro-
tein kinase C is activated by Ca2+ and a lipid metabo-
lite produced by the Ca2+ signal transduction system,
diacylglycerol. Protein kinase C activates protein ki-
nases and phosphatases with both broad and narrow
spectrum ofprotein substrates (134). Protein kinase C-
mediated responses are typically of longer duration
than calmodulin-mediated responses and include initi-
ating cell division and proliferation, cell-cell communi-
cations, organization of the cytoskeleton, and many
others (106,107).
Lead can perturb the Ca2+ receptor system directly

by substituting for Ca2+ with either more or less activ-
ity, or indirectly by interfering with the generation or
removal of the Ca2+ signal. Pb2+ will effectively and
functionally displace or substitute for Ca2+ in each of
these receptor proteins (22,135-139). The weight of evi-
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dence at this time, from these and other studies, indi-
cates that a Pb2+-calmodulin or Pb2,-protein kinase C
complex activates the same spectrum of enzymes and
elicits a similar biochemical response as the Ca2+ pro-

tein complex. However, these proteins may have a high-
er affinity for Pb2+ than Ca2 , so the prolonged Ca2+-
mediated response seen may be due to a Pb2+ signal.
The increase in total cell calcium increases in trans-

plasma membrane fluxes and mitochondrial calcium
in osteoclasts and osteoblasts (128,129) along with
increases in [Ca2+]i in osteoblastic cells may be ex-

plained by Pb2+ activation of protein kinase C. Pico-
molar concentrations of Pb2+ activate protein kinase
C in the absence of Ca2+ (137). Osteoblastlike cells
contain a protein kinase C-activated calcium channel
which could be opened by interaction with Pb2+. As a
result of opening, or partial opening of the calcium
channels, Ca2+ would flow down the electrochemical
gradient from outside the cell into the cytoplasm.
[Ca2+]i would be increased, and the mitochondria
would accumulate Ca2+ in an attempt to restore low
[Ca2+]i. Steady-state flux across the plasma mem-
brane would be increased, influx due to increased
membrane permeability to Ca2+, and efflux due to in-
creased Ca2+-ATPase activity.

Ca2+ Response Systems
The Ca2+ signal is transduced by Ca2+-receptor pro-

teins to a biochemical or mechanical response. Me-
chanical responses include contraction and cell move-

ment, while the biochemical responses encompass the
range of cell functions of cells including cell differenti-
ation and proliferation. Biochemical responses are

often elicited by the action ofcalmodulin- or protein ki-
nase C-dependent kinases and phosphorylases. These
enzymes include cyclic nucleotide phosphodiesterase,
phosphorylase kinase, adenylate cyclase, multiprotein
kinase, calmodulin-dependent kinase, Ca2+-ATPase,
and many others (134,140,141). Because these processes
are somewhat distal from the [Ca2+]i signal, it is often
difficult to experimentally establish the lead-depen-
dent perturbation of the Ca2+ response system with
suitable scientific rigor.

Modulating Systems
The calcium messenger system cannot be considered

either conceptually or experimentally as an isolated
target pathway because other messenger systems,
mainly cyclic nucleotides, modulate or counter-regu-
late the calcium signal and calcium-mediated re-

sponses. At the simplest level, Ca2+ and cAMP signals
counter-regulate each other: The Ca2+-calmodulin
activates phosphodiesterase, the enzyme responsible
for degradation of cyclic nucleotides, whereas cAMP
and cGMP often active Ca2+-ATPases, thereby reduc-
ing the [Ca2+]i signal. In fact, the interaction of the
two messenger systems is somewhat more complex in
that parathyroid hormone elicits both a Ca2+ and

cAMP response in osteoblasts, which illustrates that
some pathways may be activated by both systems
(117,118). The generation and regulation of the cAMP
signal is much simpler than the generation and regu-

lation of the [Ca2+]j signal because the enzyme adenyl-
ate cyclase makes cAMP and the enzyme phosphodies-
terase degrades cAMP.
The effects of lead on the cAMP messenger system

have not been systematically characterized. Limited
studies have shown that lead inhibits adenylate cy-

clase and thereby the generation of cyclic nucleotides
(142), although increased baseline levels ofcAMP have
been reported in tissues of lead intoxicated rats (143).
The impaired generation of a cAMP signal could be ex-
acerbated by Pb2+-calmodulin dependent activation of
phosphodiesterase, thereby degrading cyclic nucleo-
tides (136). In actuality, the spatial and temporal as-

pects of cAMP and Ca2+ signals are so complex as to
preclude prediction of toxicity based on simple obser-
vations in cell-free systems (113,114). In fact, studies of
parallel cAMP- and Ca2+-mediated hormonal inhibi-
tion of pyruvate kinase found no effects of lead on

Ca2+-mediated processes, but not cAMP processes

(144).
Thus, lead has diverse and complex actions on the

calcium messenger system, emphasizing the impor-
tance of this pathway as a key molecular and cellular
target of lead toxicity. Further work must be done to
clarify the contributions of direct and indirect effects of
lead on the calcium messenger system in mediated tox-
icity (Table 1). Although many effects of lead on Ca2+
homeostasis are described, the clinical significance
and relationship of these changes in Ca2+ metabolism
to the experimental and clinical manifestations of
skeletal lead toxicity in bone and other tissues re-

mains to be clearly defined.

¶hble 1. Spectrum of known actions of lead on Ca2+
homeostasis and Ca2+-mediated processes at the

cellular and molecular level.'
Ca"+ signal transduction Ca2+-receptor and

Interaction and homeostasis response systems
Direct Plasma membrane Ca2+ Calmodulin

channels Protein kinase C
Mitochondrial Ca2+ pump Troponin C
Ca2+-ATPase Osteocalcin

Calbindin
Oncomodulin

Indirect Adenylate cyclase Adenylate cyclase
Na+,K+-ATPase

Secondary Hydrolysis of ATP Protein-sulfhydryl
Decreased heme binding
Protein-sulfhydryl
binding

a Most of these cellular and molecular actions of lead have been
well established in several in vitro and in vivo studies using diverse
biological systems. The difficulty is separating the direct from the
less direct actions and experimentally characterizing those actions
as key and obligatory events in chronic lead toxicity. Modified slight-
ly from Pounds (114).
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Summary
The toxicity of lead in the skeleton is like that pro-

duced in other target tissues in that lead does not cause
a unique disease or pathological lesion, but rather dec-
remental loss of organ function manifested by many
biochemical, molecular, and structural lesions. The ef-
fects of lead on the skeleton may be produced through
two general processes. First, effects may be indirect
and secondary to lead effects on the endocrine organs
which synthesize or produce hormones regulating
bone function and bone mineral metabolism. Second,
lead may directly perturb bone cell function by a) pro-
ducing overt toxicity and cell death in bone cells, b)
interfering with essential cell process including cell
division, motility, and enzyme function, and c) by alter-
ing stimulus-response coupling, and/or osteoblast-os-
teoclast coupling through effects on the calcium mes-
senger system. In fact, lead toxicity in bone is likely to
be the sum of these effects. Regardless of the site of
action of lead, whether direct, indirect, or both, the ef-
fect of lead in bone is ultimately expressed by bone cell
dysfunction. Thus, understanding the interactions of
lead with bone cells is central to toxicological and
clinical significance of bone lead metabolism. A clear
understanding ofthe cellular processes should provide
important insights for identifying populations at risk
to redistribution oflead from the skeleton and the bone
functions which are most sensitive to lead toxicity.

The authors' work described in this manuscript was supported by
NIH grants ES04040 and P41RR0138 (JGP) and ES04039 and
ES01060 (JFR).
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